SPEC SHEET

SMALL FORM FACTOR, 288 CHANNEL, PROGRAMMABLE, WIDE ARRAY HYPERSPECTRAL PUSHBROOM VNIR IMAGER



PORTABLE HYPERSPECTRAL MICRO-VNIR IMAGER FOR AIR & GROUND USE

- Portable Air/Ground Hyperspectral VNIR Imager
- 0.4–1.0μm Spectral Coverage
- Self-Contained Camera & Data Recording
- 288 Spectral Channels
- 36.6° FOV,
- 1920 Spatial Imaging Pixels
- GNSS/MEMS-Inertial System Compatibility
- Custom Fore-Optics Available
- Optional GPS/IMU
- Internal Calibration System
- Easy Lidar Integration
- Remote Operation via R/F Link or Autonomous via Waypoints (e.g. KML)
- Precision Data Time Stamping to External Devices
- API Available

### WITH INTEGRATED ITRES NAV MODULE



Georeferenced and radiometrically corrected microCASI airborne mosaic. Acquired March 19, 2016 over Nitrogen Production Facility, Carseland, AB. 50cm resolution: flight altitude 1000m, ground speed 75 knots. RGB Display bands: 714nm, 650nm, 550nm

Visible-near infrared spectral signatures represent varying levels of dissolved organic content and suspended solids in each of the settling ponds.



# MICROCASI1920

Small Form Factor, 288 Channel, Wide Array, Hyperspectral Pushbroom VNIR, Imager, Continuous VNIR-SWIR Coverage When Used with ITRES  $\mu$ SASI-640.

Vegetation Classifications / Invasive Species / Optical Water Quality / Coral Reefs / Wetlands / Forestry / Agriculture / Change Detection / Environmental Impact Assessments / Utility Corridors

## SENSOR TYPE

VNIR Pushbroom Sensor

Compact Airborne Spectrographic Imager

#### PERFORMANCE

| Spectral Range<br>(Continuous Coverage) | 400 - 1000nm                   |
|-----------------------------------------|--------------------------------|
| # Spectral Channels                     | 288                            |
|                                         |                                |
| # Across-Track Pixels                   | 1920 (1840 effective)          |
| Total Field of View                     | 36.6 Degrees                   |
| IFOV                                    | 0.36 mRad (0.021°)             |
| F/#                                     | F/2.5                          |
| Spectral Width                          | 2.1nm (Average)                |
| Sampling/Row                            |                                |
| Spectral Resolution (FWHM)              | <5nm                           |
| Pixel Size                              | 5.86 <sub>×</sub> 5.86 microns |
| Dynamic Range                           | 12-Bits                        |
| Detector Full Well                      | 32,500 Electrons               |
| Maximum FPS                             | 83 FPS (full frame)            |
| Spectral Smile/                         | 0.5 pixels                     |
| Keystone Distortion                     | 0.5 pixels                     |
| Data Recording Capacity                 | >1 TB (SSD, SATA III)          |
| Data Recording Capacity(hr)             | >3 hours (@ 83 fps)            |
|                                         |                                |

#### DIMENSIONS, WEIGHTS, AND POWER

 ITEM Control, Recording
 W / H / D(CM) / WT. (KG)

 SHU
 21.1 / 11.3 / 16.9 /<2.5KG</td>

 POWER
 Sensor Head 24-32VDC , ~45W

 Subject to change

#### OPERATION

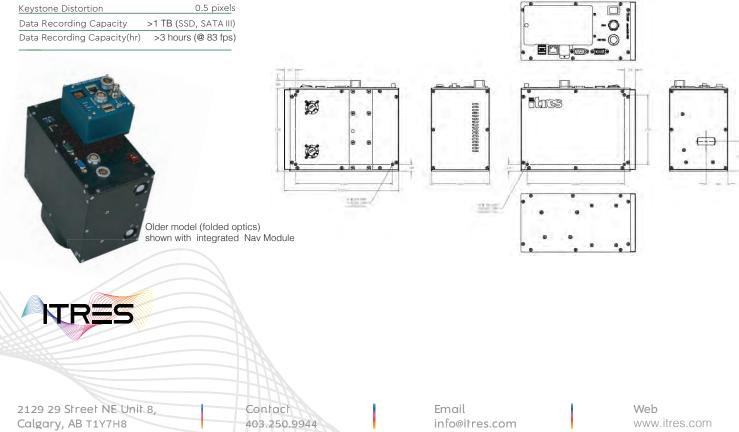
Operator Control remotely via laptop & existing R/F downlink, or pre-programming track and waypoints. Multiple Sensor Operation Up to 5 ITRES

imagers may be simultaneously operated via MuSIC™ System

# INTERFACE, TIME-STAMPING, REMOTE OPERATION & CONTROL

- GigE or USB-3
- TTL input for waypoint trigger (external)
- Automated control for pre-planned coordinates (re-
- quires MEMS inertial (accepts .shp, .kml, etc.) • Precision data time-stamping to external devices
- API available

# DATA PROCESSING SYSTEM


- Processing software Linux or Windows-based
- Playback software (Quicklook)
- Generates 16–32 bit BIP format data compatible with ENVI (BIL, BSQ formats possible)

#### GEOCORRECTION SYSTEM

- GNSS-inertial or MEMS-inertial integration (optional)<sup>1</sup>
- Data synchronization (GPS, attitude, & image streams, if INS used)
- <sup>1</sup>Many inertial systems can be used with ITRES micro imagers. Required outputs are pulse per second (PPS) and suitable GNSS timing records.

#### GEOCORRECTION/ORTHOCORRECTION/ MOSIACKING SOFTWARE

- Accepts Lidar, Ifsar, and USGS DEM inputs
- Nearest neighbor algorithm used maintains radiometric fidelity



